跳转到主要内容
x

液体活检推荐文献

 

液体活检阅读推荐文献:

Catherine Alix-Panabières. The future of liquid biopsy. Nature 579, S9 (2020) DOI: 10.1038/d41586-020-00844-5

Buscail, E. et al. High Clinical Value of Liquid Biopsy to Detect Circulating Tumor Cells and Tumor Exosomes in Pancreatic Ductal Adenocarcinoma Patients Eligible for Up-Front Surgery. Cancers 11, 1656 (2019). DOI: https://doi.org/10.3390/cancers11111656

Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926-930 (2018). DOI: 10.1126/science.aar3247

Alix-Panabières, C. & Pantel, K. Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. Cancer Discov. 6, 479-491 (2016). DOI: 10.1158/2159-8290.

Bidard, F-C et al. Type I Protein Arginine Methyltransferases Overexpression Promotes Transformation and Potentiates Her2/Neu-Driven Tumorigenesis. Cancer Res. 79, GS3-07 (2019). DOI: 10.1158/0008-5472

Chen, Gang, et al. "Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response." Nature 560.7718 (2018): 382-386.

 

Riolo, Giulia, et al. "miRNA Targets: From Prediction Tools to Experimental Validation." Methods and Protocols 4.1 (2021): 1.

Grigaitis, Pranas, et al. "miRNA target identification and prediction as a function of time in gene expression data." RNA biology 17.7 (2020): 990-1000.

Kern, Fabian, et al. "Validation of human microRNA target pathways enables evaluation of target prediction tools." Nucleic acids research 49.1 (2021): 127-144.

Tokar, Tomas, et al. "mirDIP 4.1—integrative database of human microRNA target predictions." Nucleic acids research 46.D1 (2018): D360-D370.

Chen, Liang, et al. "miRToolsGallery: a tag-based and rankable microRNA bioinformatics resources database portal." Database 2018 (2018).

Lukasik, Anna, and Piotr Zielenkiewicz. "An overview of miRNA and miRNA target analysis tools." Plant MicroRNAs (2019): 65-87.

Dweep, Harsh, and Norbert Gretz. "miRWalk2. 0: a comprehensive atlas of microRNA-target interactions." Nature methods 12.8 (2015): 697-697.

Parveen, Alisha, Norbert Gretz, and Harsh Dweep. "Obtaining miRNA‐Target Interaction Information from miRWalk2. 0." Current protocols in bioinformatics 55.1 (2016): 12-15.

Ru, Yuanbin, et al. "The multiMiR R package and database: integration of microRNA–target interactions along with their disease and drug associations." Nucleic acids research 42.17 (2014): e133-e133.

Lee, Kyungjin, and Lynnette R. Ferguson. "MicroRNA biomarkers predicting risk, initiation and progression of colorectal cancer." World journal of gastroenterology 22.33 (2016): 7389.

Zhang, Jia-Xing, et al. "Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis." The lancet oncology 14.13 (2013): 1295-1306.

Condrat, Carmen Elena, et al. "miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis." Cells 9.2 (2020): 276.

Sun, Yiwen, et al. "FMSM: a novel computational model for predicting potential miRNA biomarkers for various human diseases." BMC systems biology 12.9 (2018): 57-68.

Wang, Hsiuying. "Predicting microRNA biomarkers for cancer using phylogenetic tree and microarray analysis." International journal of molecular sciences 17.5 (2016): 773.

Lin, Yuxin, et al. "MiRNA-BD: an evidence-based bioinformatics model and software tool for microRNA biomarker discovery." RNA biology 15.8 (2018): 1093-1105.

He, Shenghua, et al. "A novel systematic approach for cancer treatment prognosis and its applications in oropharyngeal cancer with microRNA biomarkers." Bioinformatics (2021).

 

Chang, Le, et al. "miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology." Nucleic Acids Research 48.W1 (2020): W244-W251.

Licursi, Valerio, et al. "MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis." BMC bioinformatics 20.1 (2019): 1-10.

Tong, Zhan, et al. "TransmiR v2. 0: an updated transcription factor-microRNA regulation database." Nucleic acids research 47.D1 (2019): D253-D258.

Israel Steinfeld, Roy Navon, Robert Ach, Zohar Yakhini. "miRNA target enrichment analysis reveals directly active miRNAs in health and disease", Nucleic Acids Research 2012(miTEA, http://cbl-gorilla.cs.technion.ac.il/miTEA/)

Bleazard, Thomas, Janine A. Lamb, and Sam Griffiths-Jones. "Bias in microRNA functional enrichment analysis." Bioinformatics 31.10 (2015): 1592-1598.

Shen, Li, et al. "Knowledge-guided bioinformatics model for identifying autism spectrum disorder diagnostic MicroRNA biomarkers." Scientific reports 6.1 (2016): 1-9.